

LVDS Output

10 MHz to 160 MHz Differential Output Crystal Oscillator

DESCRIPTION

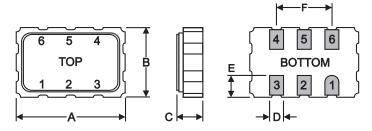
Statek's surface mount Low Voltage Differential Output Crystal Oscillators are designed for applications requiring ultra high frequency differential outputs and low jitter in a small footprint.

FEATURES

- High shock option
- Low phase noise and low phase jitter
- Available at 2.5 V and 3.3 V operating voltages
- Low Allan deviation without PLL artifacts
- High frequency fundamental mode crystal
- Ultra-low period jitter

APPLICATIONS

- Avionics
- Communications
- Guidance and Navigation

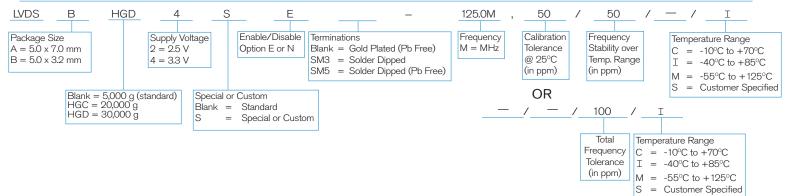

PIN CONNECTIONS

- 1. Enable/Disable (E) or not connected (N)
- 2. Not Connected (NC)
- 3. Ground
- 4. LVDS
- 5. LVDS (complementary)
- 6. Supply Voltage (V_{DD})

Low Profile

DIMENSIONS

PACKAGE DIMENSIONS


Dimension	LVDSA	LVDSB
А	7.00	5.00
В	5.00	3.20
C (SM1)	1.50	1.30
C (SM3/SM5)	1.60	1.40
D	1.40	0.64
E	1.10	1.20
F	5.08	2.54

All dimensions are typical (mm)

PACKAGING OPTIONS

- LVDS Tray Pack
 - Tape and reel Per EIA 481

HOW TO ORDER LVDS SURFACE MOUNT CRYSTAL OSCILLATORS

STATEK CORPORATION 512 N. MAIN ST., ORANGE, CA 92868 714-639-7810 FAX: 714-997-1256 www.statek.com

10231 Rev B

ENABLE/DISABLE OPTIONS (E/N)

Statek offers two enable/disable options: E and N. The E-version has a tri-state output and stops oscillating internally when the output is put into the high Z state. The N-version does not have PIN 1 connected internally and so has no enable/disable capability. The following table describes the Enable/Disable option E.

ENABLE/DISABLE OPTION E FUNCTION TABLE

	Enable (Pin 1 High*)	Disable (Pin 1 Low)	
Output	Frequency Output	High Z State	
Oscillator	Oscillates	Stops	
Current	Normal	Very Low	

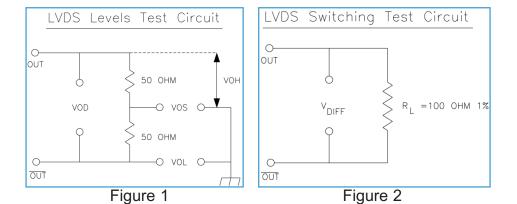
*When PIN 1 is allowed to float, it is held high by an internal pull-up resistor.

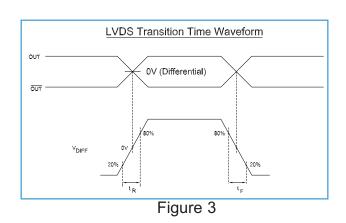
SPECIFICATION TABLES Parameters listed are at 25°C unless otherwise noted.

Parameter	Symbol	Units	Tightest	Standard	Maximum	Conditions / Comm	ents	
Frequency		MHz		10 to 160				
Supply Voltage		V		3.3 ±10%		$2.5 \pm 10\%$ available		
Calibration Tolerance		ppm	±25	±50	±100	At 25°C Other tolerances available		
Frequency Stability ¹		ppm	±50	±75	±100	-55°C to +125°C		
		ppm	±30	±50	±100	-40°C to +85°C		
Frequency Tolerance (Total)		ppm	±40	±50	±100	-40°C to +85°C		
Shock, survival ²		g			5,000	0.3 ms, ½ sine: LVDSA		
		g			30,000	0.3 ms, ½ sine: LVDSB		
Vibration, survival ³		g		20		10-2,000 Hz swept sine		
Aging		ppm		±5		First year depending on frequency		
LVDS Output Parameter	Symbol	Units	Minimum	Typical	Maximum	Conditions / Comments		
Output Differential Voltage	V _{OD}	mV	247	330	454			
Output Differential Voltage Error	ΔV_{OD}	mV			50	- RL = 100 Ω (1%) - See Figure 1		
Output High Voltage	V _{OH}	V		1.4	1.6			
Output Low Voltage	V _{OL}	V	0.9	1.1				
Offset Voltage	V _{OS}	V	1.125	1.250	1.375			
Offset Voltage Error	ΔV_{OS}	mV	0		50			
Output Leakage	I _{OS}	uA			10	$V_{OUT} = V_{DD}$ or GND (OE=0V)		
Stand by Current					15	Ta ≤ +85°C		
Stand by Current	IOSD	uA			30	Ta > +85°C		
Rise Time (Differential Clock)	t _R	ps		200		RL = 100 Ω (20% to 80%)		
Fall Time (Differential Clock)	t _F	ps		200		See Figures 2 and 3		
Supply Current (Outputs Loaded) ⁴	I _{DD}	mA		25	30			
Duty Cycle (Output Clock) ⁵		%	40		60	At Differential OV. See Figures 2 and 3		
Output Swing	V _{DIFF}	V	0.4			See Figure 2		
Timing Jitter - 125 MHz	Symbol	Units	Minimum	Typical	Maximum	Conditions / Comments		
Jitter (Integrated)		ps		0.074		125 MHz (12 kHz to	20 MHz RMS)	
Jitter (Period)		ps		1.0		125 MHz (10,000 cycles RMS)		
Phase Noise - 125 MHz	Symbol	Units	1 kHz offset	10 kHz offset	100 kHz offset	1 MHz offset	10 MHz offset	
Typical (LVDS)	L	dBc/Hz	-127	-144	-155	-158	-161	
1. Does not include calibration tolerance.		3. Per MIL-STD-	202G, Method 204D, R	andom vibration testing a	lso available	5. Contact factory for 45-5	5% duty cycle	

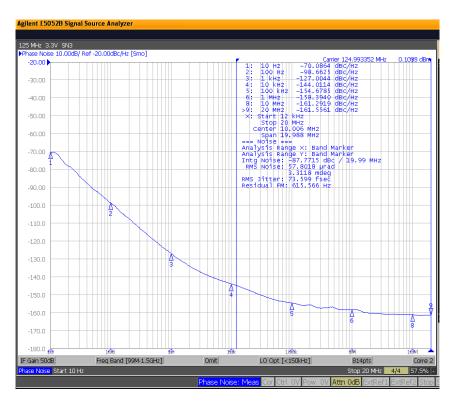
2. Shock survival 10 MHz - 125 MHz.

 3. Per MIL-STD-202G, Method 204D, Random vibration testing also available.
 5. Contact factory for 45-55% duty cycle.


 4. Typical for 160 MHz, 3.3 V.
 5. Contact factory for 45-55% duty cycle.


ABSOLUTE MAXIMUM RATINGS

Supply Voltage V
DD-0.3 VStorage Temperature-55°CMaximum Process Temperature260°ESD Protection Human Body Model2 kV


-0.3 V to 4.0 V -55°C to +150°C 260°C for 10 seconds 2 kV

PHASE NOISE PERFORMANCE AT 125 MHZ

