DESCRIPTION

Statek's miniature and ultra low phase noise and jitter oscillators consist of a CMOS compatible hybrid circuit and a state-of-the-art, miniature, fundamental-mode crystal. At 20 MHz , a noise floor of $-170 \mathrm{dBc} / \mathrm{Hz}$ at 1 MHz offset and $-160 \mathrm{dBc} / \mathrm{Hz}$ at 1 kHz offset with high shock survivability. At 125 MHz , typical RMS phase jitter over 12 kHz to 20 MHz is 75 fs .

FEATURES

$3.2 \times 2.5 \mathrm{~mm}$ hermetically sealed ceramic package

- High shock resistance (HG version) up to $100,000 \mathrm{~g}$
- CMOS output with Enable/Disable

Low phase noise, jitter and Allan deviation
Operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Low acceleration sensitivity
Wide supply voltage options (1.8 V to 5.0 V)
No PLL artifacts
Full military testing available

- IBIS model available

Designed and manufactured in the USA

APPLICATIONS

Military \& Aerospace

Communications
Navigation
GPS
Industrial, Computer \& Communications
Miniature clock oscillator
Handheld instrumentation

Medical

Test \& diagnostic equipment

- Handheld devices

PACKAGING OPTIONS

Tray Pack
Tape and Reel (per EIA 481). See tape and reel datasheet 10109.

CXOXLLPN OSCILLATOR

10 MHz to 125 MHz

Ultra Low Phase Noise, High Shock Quartz

PACKAGE DIMENSIONS

DIM	Termination	TYPICAL		MAXIMUM	
		inches	mm	inches	mm
A		0.126	3.20	0.136	3.40
B		0.099	2.50	0.107	2.70
C	SM1	0.039	1.00	0.043	1.09
	SM3/SM5	0.044	1.12	0.048	1.21
D		0.040	1.00	0.041	1.10
E		0.030	0.75	0.031	0.85

PIN CONNECTIONS

1. Output Enable/Disable (E) or no connection (N)
2. Ground
3. Output
4. $V_{D D}$

SUGGESTED LAND PATTERN

SPECIFICATIONS

Specifications are typical at $25^{\circ} \mathrm{C}$ unless otherwise noted. Specifications are subject to change without notice. Tighter specifications available.

Frequency	10 MHz to 125 MHz			
Supply Voltage ${ }^{1}$	1.8 V to $5.0 \mathrm{~V} \pm 10 \%$			
Calibration Tolerance ${ }^{2}$	$\pm 100 \mathrm{ppm}$ to $\pm 50 \mathrm{ppm}$			
Frequency-Temperature Stability ${ }^{3,4}$	$\begin{gathered} \pm 50 \mathrm{ppm} \text { to } \pm 10 \mathrm{ppm} \text { (Commercial) } \\ \pm 100 \mathrm{ppm} \text { to } \pm 30 \mathrm{ppm} \text { (Industrial) } \\ \pm 100 \mathrm{ppm} \text { to } \pm 50 \text { ppm (Military) } \end{gathered}$			
Typical Supply Current @ 15 pF Output Load (mA)	10 MHz 20 MHz 25 MHz 50 MHz 100 MHz 125 MHz	$\begin{gathered} 1.8 \mathrm{~V} \\ \hline 1.1 \\ 1.6 \\ 1.3 \\ 2.3 \\ 4.5 \\ 7.2 \end{gathered}$	$\begin{array}{r} 2.5 \mathrm{~V} \\ \hline 1.9 \\ 3.0 \\ 1.8 \\ 3.2 \\ 6.1 \\ 10.0 \end{array}$	$\begin{array}{r} \hline 3.3 \mathrm{~V} \\ \hline 3.2 \\ 5.0 \\ 2.8 \\ 4.7 \\ 8.3 \\ 12.9 \end{array}$
Output Load (CMOS)	15 pF			
Start-up Time	5 ms MAX			
Rise/Fall Time	2 ns TYP			
Duty Cycle	45\% MIN, 55\% MAX			
Aging, First Year	3 ppm MAX			
Shock Survival ${ }^{5}$	STD: $5,000 \mathrm{~g}, 0.3 \mathrm{~ms}, 1 / 2$ sine HG: up to $100,000 \mathrm{~g}, 0.5 \mathrm{~ms}, 1 / 2$ sine			
Vibration Survival ${ }^{6}$	$20 \mathrm{~g}, 10-2,000 \mathrm{~Hz}$ swept sine			
Operating Temperature Range	$\begin{gathered} -10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \text { (Commercial) } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (Industrial) } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (Military) } \end{gathered}$			
Storage Temperature Range ${ }^{4}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
Max Process Temperature	$260^{\circ} \mathrm{C}$ for 20 seconds			
Max Supply Voltage (V_{DD})	-0.3 V to 4.0 V			
Moisture Sensitivity Level (MSL)	This product is hermetically sealed and is not moisture sensitive.			

1. 5.0 V available 10 MHz to $60 \mathrm{MHz}(3.8 \mathrm{~mA} @ 25 \mathrm{MHz}$).
2. Tighter tolerances available.
3. Does not include calibration tolerance. Tighter tolerances available.
4. Broader temperature ranges available. Contact factory.
5. Contact factory for high shock options for frequencies greater than 50 MHz .
6. Per MIL-STD-202, Method 204, Condition D. Random vibration testing also available.

ENABLE/DISABLE OPTIONS (E/N)

Statek offers two enable/disable options: E and N. The E-version has a Tri-State output and stops oscillating internally when the output is put into the high Z state. The N -version does not have PIN 1 connected internally and so has no enable/disable capability. The following table describes the Enable/Disable option E.

ENABLE/DISABLE OPTIONE FUNCTION TABLE

	Enable (Pin 1 High*)	Disable (Pin 1 Low)
Output	Frequency Output	High Z State
Oscillator	Oscillates	Stops
Current	Normal	Very Low

[^0]
PHASE NOISE AND JITTER PEFORMANCE

Typical phase noise for various oscillator frequencies and voltages [dBc/Hz]

Integrated RMS phase jitter ${ }^{1}$

Frequency	$V_{D D}=2.5 \mathrm{~V}$	$\mathbf{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$
$\mathbf{1 0 ~ M H z}$	625 fs	329 fs
20 MHz	115 fs	75 fs
25 MHz	160 fs	151 fs
$\mathbf{5 0 ~ M H z}$	179 fs	153 fs
100 MHz	100 fs	76 fs
$\mathbf{1 2 5 ~ M H z}$	106 fs	75 fs

1. 12 kHz to 20 MHz , unless noted otherwise.

Period jitter (typical) over 10,000 cycles (3.3 V)

Frequency	RMS	Peak-to-Peak
$\mathbf{1 0 ~ M H z}$	1.20 ps	9.1 ps
$\mathbf{2 0 ~ M H z}$	1.12 ps	8.5 ps
$\mathbf{2 5 ~ M H z}$	1.15 ps	9.6 ps
50 MHz	1.02 ps	8.1 ps
100 MHz	1.02 ps	8.3 ps
$\mathbf{1 2 5 ~ M H z}$	0.90 ps	7.0 ps

10226 REV F

HOW TO ORDER STATEK CXOXLPN OSCILLATORS

[^0]: *When PIN 1 is allowed to float, it is held high by an internal pull-up resistor.

