EURO QUARTZ

CX4 CRYSTAL

Ultra-miniature Low Profile SMD

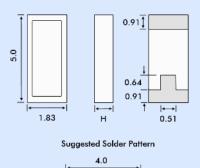
FEATURES

- Designed for low power applications
- Smallest available package in this frequency range
- Hermetically sealed, ceramic package
- Excellent ageing characteristics
- Full Military testing available

DESCRIPTION

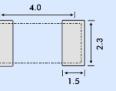
CX4 crystals are leadless devices designed for surface mounting on PCBs or hybrid substrates. The crystal has been designed for low power applications.Designed and manufactured by Statek Inc.

SPECIFICATION


Specifications stated are typical at 25°C unless otherwise indicated. Specifications may change without notice.

Parameters	Fundamental		Overtone		
Frequency (Hz):	600K	1.0M	1.4M	1.8432M	2.4576M
Motional Resistance R1 (kΩ):	300	400	600	500	1000
Motional Resistance R1 Max. (k Ω):			3kΩ		
Motional Capacitance C1 (Ff):	3.5	2.0	1.3	3.5	1.5
Quality Factor Q (k):	250	200	150	80	45
Shunt Capacitance C0 (pF):	1.0	0.8	0.7	1.0	0.8

Standard Calibration Tolerance ¹ :	±500ppm (±0.5%) ±1000ppm (±0.1%) ±10000ppm (±1.0%)
Drive Level:	3μW maximum
Load Capacitance CL ² :	7pF
Turning Point ² :	35°C
Temperature Coefficient (k):	-0.035ppm/°C ²


Note: Frequency f at temperature	T is related to frequency Fo at		
turning point temperature To by:	$\frac{\text{f-fo}}{\text{fo}} = \text{k}(\text{T-To})^2$		
Functional mode:	Extensional		
Ageing, First year:	±5pppm maximum		
Shock, survival:	1500g, 0.3ms, ½ sine		
Vibration, survival:	20g rms, 10~2000Hz random		
Operating Temperature Range			
Commercial:	-10° to +70°C		
Industrial:	-40° to +85°C		
Military:	-55 to +125°C		
Storage Temperature Range:	-55° to +125°C		
Maximum Process Temperature:	+260°C for 20 seconds		

OUTLINE & DIMENSIONS

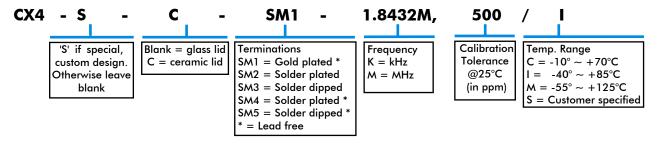
Fundamental Mode: 600kHz to 1.4MHz

Overtone: 1.8432MHz to 2.5MHz

Dim. H	Glass Lid	Ceramic Lid
SM1	1.14	1.27
SM2	1.17	1.30
SM3	1.22	1.35
SM4	1.17	1.30
SM5	1.22	1.35

PACKAGING OPTIONS

CX4 crystals are available either tray packed (<250pcs) or tape and reel (>250 pieces). 16mm tape, 178mm or 330mm reels (EIA 418).


HOW TO ORDER CX4 CRYSTALS

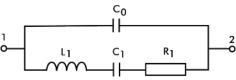
1.

2

Tighter tolerance available

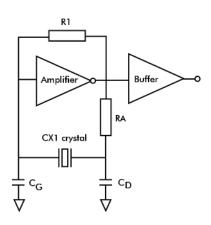
Other values available

EUROQUARTZ LIMITED Blacknell Lane CREWKERNE Somerset UK TA18 7HE Tel: +44 (0)1460 230000 Fax: +44 (0)1460 230001 info@euroquartz.co.uk www.euroquartz.co.uk


EURO QUARTZ

CX4 CRYSTAL

Ultra-miniature Low Profile SMD


Fundamental Mode: 600kHz to 1.4MHz Overtone: 1.8432MHz to 2.5MHz

CRYSTAL EQUIVALENT CIRCUIT

R1 Motional Resistance C1 Motional Capacitance L1 Motional Inductance C0 Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

TERMINATIONS - PLATING

Designation	Termination
SM1	Gold Plated (Lead Free)
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (Lead Free)
SM5	Solder Dipped (Lead Free)

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature crystal is ideal for use in small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional Pierce oscillator is shown above. The crystal is effectively inductive and in a Pi network circuit with C^D and C^G provides the additional phase shift to sustain oscillation. The oscillation frequency (f^O) is 15 to 250ppm above the crystal's resonant frequency (f^S).

Drive Level

 R^A is used to limit the crystal's drive level by forming a voltage divider between R^A and C^D. R^A also stabilizes the oscillator against changes in the amplifier's output resistance (R^o). R^A should be increased for higher voltage operation.

Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (CL). CL is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$

Note: C^D and C^G include stray layout-induced capacitance to ground and C^S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C^L will be less than that calculated from C^D, C^G and C^S values because of the effect of the amplifier output resistance. C^S should be minimized.

The oscillation frequency (fo) is approximately equal to:

$$f_{O} = f_{S} \left[1 + \frac{C_{1}}{2(C_{O} + C_{L})} \right]$$

Where

 $\label{eq:Fs} \begin{array}{l} F^s = \text{Series resonant frequency of the crystal} \\ C^1 = \text{Motional Capacitance} \\ C^\circ = \text{Shunt Capacitance} \end{array}$