EURO QUARTZ

OUTLINE & DIMENSIONS

CX3SM CRYSTAL 800kHz to 1.35MHz

FEATURES

- Extensional mode resonator, 760kHz to 1.35MHz
- Designed for low power applications
- Ideal microprocessor clock crystal
- Low ageing
- Full military testing available

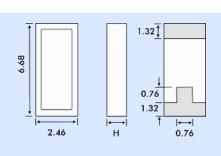
DESCRIPTION

CX3SM crystals consist of a high quality extensional mode resonator in a rugged, hermetically sealed ceramic package.

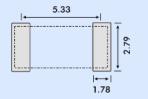
Low Profile Miniature SMD AT Crystal

SPECIFICATION

Specifications stated are typical at 25°C unless otherwise indicated. Specifications may change without notice.


Frequency Range:	800kHz to 1.35MHz
Standard Calibration Tolerance*:	±500ppm (0.05%) ±1000ppm (0.1%)
Land Committee and	±10000ppm (1.0%)
Load Capacitance:	7pF
Motional Resistance (R1):	5kΩ maximum
Motional Capacitance (C1):	1.2fF
Quality Factor (Q):	150k
Shunt Capacitance (C0):	1.0pF
Drive Level:	3µW maximum
Turning Point (T0**):	35°C
Temperature Coefficient (k):	-0.035ppm/°C2
Ageing First Year:	±5ppm maximum
Shock, Survival:	1000g, 0.3ms, ½ sine
Vibration, Survival:	10g rms, 20~1000Hz random
Operating Temperature Range:	-10°C to +70°C (Commercial)
	-40°C to +85°C (Industrial)
	-55°C to +125°C (Military)
Storage Temperature Range:	-55° to +125°C
Maximum Process Temperature:	+260°C for 20 seconds

· ·


Tighter frequency calibration is available.
Other turning point is available.

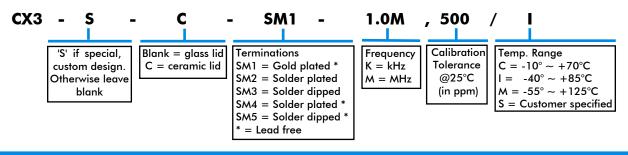
** Other turning point is available.

Designed and manufactured by Statek Inc.

Dim. H	Glass Lid	Ceramic Lid
SM1	1.35	1.70
SM2	1.40	1.75
SM3	1.47	1.83
SM4	1.40	1.75
SM5	1.47	1.83

PACKAGING OPTIONS

CX3SM crystals are available either tray packed (<250pcs) or tape and reel (>250 pieces).

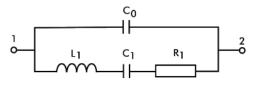

16mm tape, 178mm or 330mm reels (EIA 418).

Turning Point Temperature

Note: Frequency f at temperature T is related to frequency Fo at turning point temperature To by:

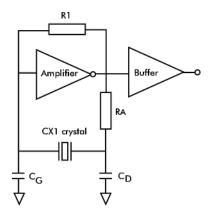
$$\frac{f-fo}{fo} = k(T-To)^2$$

HOW TO ORDER CX3SM CRYSTALS


CX3SM CRYSTAL

Low Profile Miniature SMD Crystal

800kHz to 1.35MHz


CRYSTAL EQUIVALENT CIRCUIT

EUROQUARTZ

R1 Motional Resistance C1 Motional Capacitance L1 Motional Inductance C0 Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

TERMINATIONS - PLATING

Designation	Termination
SM1	Gold Plated (Lead Free)
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (Lead Free)
SM5	Solder Dipped (Lead Free)

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature crystal is ideal for use in small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional Pierce oscillator is shown above. The crystal is effectively inductive and in a Pi network circuit with C^D and C^G provides the additional phase shift to sustain oscillation. The oscillation frequency (f^o) is 15 to 250ppm above the crystal's resonant frequency (f^s).

Drive Level

 R^A is used to limit the crystal's drive level by forming a voltage divider between R^A and CD. R^A also stabilizes the oscillator against changes in the amplifier's output resistance (R^o). R^A should be increased for higher voltage operation.

Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (CL). CL is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$

Note: C^D and C^G include stray layout-induced capacitance to ground and C^S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C^L will be less than that calculated from C^D, C^G and C^S values because of the effect of the amplifier output resistance. C^S should be minimized.

The oscillation frequency (fo) is approximately equal to:

$$f_{O} = f_{S} \left[1 + \frac{C_{1}}{2(C_{O} + C_{L})} \right]$$

Where

 $\label{eq:Fs} \begin{array}{l} Fs = \text{Series resonant frequency of the crystal} \\ C^1 = \text{Motional Capacitance} \\ C^o = \text{Shunt Capacitance} \end{array}$