

CX1VSM CRYSTAL

Miniature SMD Crystal for Pierce Oscillators

10kHz to 600kHz

FEATURES

- Frequency Range 10kHz to 600kHz
- **High shock resistance**
- Low ageing
- **Designed for low power applications**
- Full MIL testing available

DESCRIPTION

CX1VSM crystals consist of a high quality tuning fork resonator in a rugged, hermetically sealed ceramic package. CX1VSM is intended for use in Pierce (single inverter) oscillator circuits. Designed and manufactured by Statek Inc.

SPECIFICATION

Specifications stated are typical at 25°C unless otherwise indicated. Specifications may change without notice.

10.0kHz to 600.0kHz Frequency Range: Standard Calibration Tolerance*: see table

Motional Resistance (R1): Figure 1

 $Max = 10 \sim 169.9 \text{kHz}$, 2x typical

170~600kHz, 2.5x typical

Motional Capacitance (C1): Figure 2 Quality Factor (Q): Figure 3

Min. is 0.25x typical

Shunt Capacitance (Co): 2.0pF max.

Drive Level

 $0.5\mu W$ max. 10~24.9kHz: 25~600.0kHz: $1.0\mu W$ max. Figure 4

Turning Point (To)**: -0.035ppm/°C2 Temperature Coefficient (k): Ageing, first year: 5ppm max.

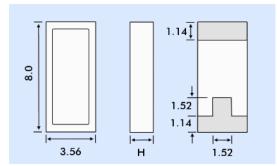
Shock, survival*** 1,000g, 1ms, 1/2 sine Vibration, survival***: 20g rms, 10~2000Hz

Operating Temperature Range

Commercial: -10° to +70°C Industrial: -40° to +85°C Military: -55 to +125°C -55° to +125°C Storage Temperature Range:

+260°C for 20 seconds Maximum Process Temperature:

- Tighter frequency calibration is available.
- Other turning point is available
- Higher shock and vibration survival is available


PACKAGING OPTIONS

CX1VSM crystals are available either tray packed (<250pcs) or tape and reel (>250 pieces).

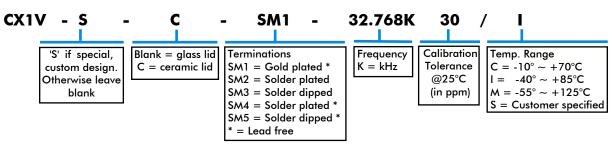
16mm tape, 178mm or 330mm reels (EIA 418).

OUTLINE & DIMENSIONS

DIMENSION 'H'

Terminations	Glass Lid	Ceramic Lid
SM1	1.65	1.78
SM2/SM4	1.70	1.83
SM3/SM5	1.78	1.90

STANDARD CALIBRATION TOLERANCE

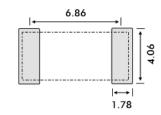

Frequency Range (kHz)				
16~74.9	75~169.9	170~249	250~600	
±30ppm	±50ppm	±100ppm	±200ppm	
(0.003%)	(0.005%)	(0.01%)	(0.02%)	
±100ppm	±100ppm	±200ppm	±500ppm	
(0.01%)	(0.01%)	(0.02%)	(0.05%)	
±1000ppm	±1000ppm	±2000ppm	±5000ppm	
(0.1%)	(0.1%)	(0.2%)	(0.5%)	

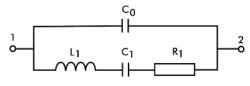
LOAD CAPACITANCE (CL)*

Frequency Range (kHz)	Load Capacitance	Frequency Range (kHz)	Load Capacitance
10~15.9	11pF	55~99.9	8pF
16~24.9	10pF	100~179.9	5pF
25~54.9	9pF	180~600	4pF

The load capacitance we use to calibrate CX1VSM. (Other CL is available.)

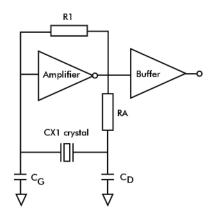
HOW TO ORDER CX1VSM CRYSTALS




Miniature SMD Crystal for Pierce Oscillators

10kHz to 600kHz

SUGGESTED SOLDERING PATTERN



CRYSTAL EQUIVALENT CIRCUIT

R1 Motional Resistance C1 Motional Capacitance L1 Motional Inductance C0 Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

TERMINATIONS - PLATING

Designation	Termination
SM1	Gold Plated (Lead Free)
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (Lead Free)
SM5	Solder Dipped (Lead Free)

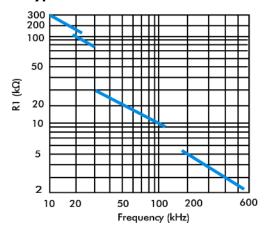
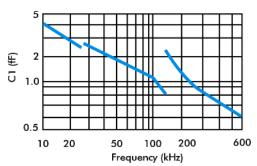
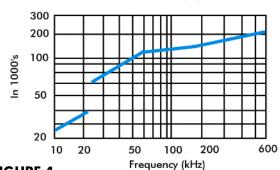
Turning Point Temperature

Note: Frequency f at temperature T is related to frequency F0 at turning point temperature To by:

f-fo

$$\frac{f-fo}{fo} = k(T-To)^2$$

FIGURE 1 CX1V Typical Motional Resistance R1

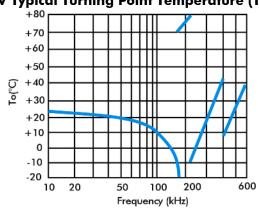

FIGURE 2
CX1V Typical Motional Capacitance C1

FIGURE 3 CX1V Typical Quality Factor (Q)

FIGURE 4 CX1V Typical Turning Point Temperature (To)

